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Abstract. The tasks of image reconstruction from measured data and the analysis of the so
produced images are more or less strictly separated. One group computes by applying reconstruc-
tion algorithms the images, the other starts out of that by operating on these images to enhance the
analysis. First attempts, in a non - systematic way, are known, as Lambda tomography or Tikhonov
- Phillips methods with `1 – norms or with level – set methods.
The aim of this paper is to provide a general tool to combine these two steps; i.e., already in the
reconstruction step the future image analysis step is taken into account leading to a new reconstruc-
tion kernel. Here we concentrate on linear methods.
As practical example we consider the image reconstruction problem in computerized tomography
followed by an edge detection. We calculate a new reconstruction kernel and present results from
simulations.
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1. Introduction. In order to extract information from a given image, analysis
tools are used. In a first step one applies operators on that image, then the searched
– for information is found by operating on these enhanced versions of the original
picture. Images typically are two-dimensional arrays of numbers. Of course, three-
dimensional arrays for volume data or even time - dependent data, which may amount
to four-dimensional data, are conceivable. Prominent analysis tools are edge detection
methods where first partial derivatives of smoothed versions of the image are com-
puted, followed then by recognition methods. A typical example is the Canny edge
detector, see [4]. Other operations can be found e.g. in [6, 11]. Here we restrict, as
above mentioned, to linear operators. In denoising one can think of solving the heat
equation with homogeneous boundary condition and initial condition as the original
image, at the final time T the image is considered to be denoised.

We have to mention that of course also non - linear methods play an essential
role. But this does – at least at the moment – not fit in our framework.

Attempts to combine reconstruction and analysis are known, but not systemati-
cally pursued. As examples we mention the Λ – CT, where local inversion formulas
produce images where the singular support is preserved, which means, that those
images have jumps wherever the original image has them. See e.g. [10, 13, 21]. The
use of Tikhonov – Phillips regularization with `1 – norms results in smooth images,
see e.g. [5]. Level – set methods in combination with tomography data lead to the
determination of the boundary of the object, at least if the objects are relatively
smooth with jumps along smooth curves, see e.g. [29]. Another possibility is the
direct calculation of wavelet coefficients of the searched - for solution, see [22] and for
an application to tomography see [3]. These coefficients may be used in classification
algorithms or in local reconstructions, see [26]. Here as mollifier, see next section, we
use the scaling function and the wavelets.

In order to make the statements more precise we consider the following example.
In computerized tomography the images are produced by applying reconstruction al-
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gorithms to the measured data. In that way one calculates images which are smoothed
version of the original density distributions. The result can be presented as

fγ = f ∗ eγ =: Eγf

where f is the original object and eγ is a mollifier depending on the reconstruction
method. In the image analysis part, for example in the above mentioned edge de-
tection methods, one computes then derivatives of smoothed versions of this image.
Typically one calculates in a first step

fγβk =
∂

∂xk

(
Gβ ∗ fγ

)
=

∂

∂xk

(
Wβfγ

)
=

∂

∂xk

(
WβEγf

)
where Gβ represents a mollifier, for example a Gaussian kernel, and where the two
parameters β and γ are chosen independently. The aim of this paper is to provide a
method which allows for directly computing in one step the smoothed version of the
derivative. To this end in the next chapter we generalize the concept of approximate
inverse as introduced in [20]. We precompute independently of the data g a recon-
struction kernel ψγ by solving an auxiliary problem A∗ψγ = eγ . Then the solution is
calculated as g ∗ψγ . A further advantage is that invariances of the operator combined
with suitable mollifiers lead to very efficient reconstruction methods.

In Chapter 2 we present some basic facts about linear ill–posed problems, we then
introduce the approximate inverse for combining the two steps on regularization and
analyzing. In Chapter 4 we study the regularization properties of the new method.
Chapter 5 is devoted to the efficient calculation of the result using invariances of the
included operators. Finally in the last section we present results for the case of tomog-
raphy in combination with edge detection, we derive a new filter and present results
from simulations, showing that the results obtained in this way are better than with
the classical approach of separately performing reconstruction and differentiation. In
addition the computing is much quicker.

2. Linear Ill - Posed Problems. We consider a continuous mapping A between
the Hilbert spaces X and Y . The problem (A,X, Y ) is called well - posed if Af = g
has a unique solution that depends continuously on the data. If one of those conditions
is not fulfilled the problem is called ill - posed. It is important to include the spaces
in this definition, then by changing the spaces we may get well-posed problems. The
reason for choosing the given spaces, is that on one hand the data, including the
noise, are mostly not smooth enough to choose a smaller space Y . On the other hand,
by selecting a larger space X we may change the concept of solution, including for
examples distributions.
Many integral equations of the first kind lead to compact operators between X and Y ,
which means that if the operator does not have finite rank the range of Y , denoted by
R(A), is not closed and hence the inverse is not continuous. In order to define solutions
for these in the classical sense not necessarily solvable problems we introduce the
pseudo - inverse with domain of definition D(A†) = R(A)⊕N (A∗) ⊂ R(A)⊕N (A∗) =
Y mapping g ∈ D(A†) to the uniquely determined f ∈ N (A)⊥ ⊂ X which solves

Af = PR(A)
g (2.1)

where PR(A)
is the orthogonal projection onto the closure of the range of A. Hence

the null - space of the so defined A† is N (A†) = N (A∗).
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To measure the degree of ill - posedness, which is important to select the appropriate
regularization, in principle two concepts are used. One is based on the decay of the
singular values of the compact operator A, see [17]. Another possibility is to consider
the smoothing properties of A as introduced by Natterer, see [24], if the spaces are
based on L2 – spaces. We say that A smoothes α steps in a Sobolev scale if

c1‖f‖H−α ≤ ‖Af‖L2 ≤ c2‖f‖H−α (2.2)

or

c1‖f‖L2 ≤ ‖Af‖Hα ≤ c2‖f‖L2 (2.3)

where the Sobolev norms for functions in IRN are defined as

‖f‖2
Hα =

∫
IRN

(
1 + |ξ|2

)α|f̂(ξ)|2dξ (2.4)

with the Fourier transform

f̂(ξ) = (2π)−N/2

∫
IRN

f(x) exp
(
−ıξ>x

)
dx (2.5)

In the case of Fourier integral operators this definition coincides with the fact that
the singular values σn of A as mapping between L2 spaces decay like O(n−α). We
say, the problem

(
A,L2, L2

)
is ill – posed of order α.

In this paper we use the smoothing properties in Sobolev scales to measure the degree
of ill - posedness for spaces X = L2(U) and Y = L2(V ) for suitable domains U and
V .
The theory of regularization is concerned with the definition of solutions for arbitrary
data in Y with the additional aspect of balancing the influence of the unavoidable
data error against the best possible resolution in the reconstruction. This is achieved
by constructing operators Tγ : Y → X with the property that

lim
ε→0

Tγ(ε,gε)g
ε = A†g

when g ∈ D(A†) and the erroneous data gε go to g for ε→ 0.
It is shown in [19] that many of the well - known regularization methods, including the
truncated singular value decomposition or the Tikhonov - Phillips method or iterative
methods like Landweber or CG are, as well as the approximate inverse, of the form

Tγ = MγÃ
†

with a smoothing operator Mγ and a suitable continuation of A† to all of Y . Another
possibility is to first smooth the data and then to invert.
In order to extend the operator A† to all of Y = R(A)⊕N (A∗) we put on N (A∗)

Ã†g = A†g = 0 , g ∈ N (A∗)

The right – hand side of condition (2.3) says that A maps L2(U) continuously to
Hα(V ) ⊂ L2(V ) for α > 0, hence R(A) ⊂ Hα(V ) ⊂ L2(V ). The left - hand side
of condition (2.2) says that A is continuously invertible from N (A)⊥ ⊂ L2(V ) to
H−α(U) where the norm of the inverse is bounded by c−1

1 . Hence we define Ã† on
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R(A) as this inverse observing that on R(A) this coincides with the definition of A†

due to (2.1) and get
Theorem 2.1. The continuation of the pseudo–inverse A† to all of Y = L2(V )

is a mapping with Ã† : L2(V ) → H−α(U) with ‖Ã†‖ ≤ c−1
1 .

Proof. We decompose g ∈ L2(V ) into g = g1+g0 with g1 ∈ R(A) and g0 ∈ N (A∗),
then due to the above construction and (2.2) we get

‖Ã†g‖H−α≤c−1
1 ‖g1‖L2≤c−1

1 ‖g‖L2

which completes the proof.
If we use differential operators in the image analysis step then we consider, with

the same arguments as above, these operators L as mapping

L : D(L) ⊂ X → X

in order not to change the space where the solution or the approximate solution is
presented. Obviously, differential operators are unbounded mappings when considered
as

L : D(L) ⊂ L2(U) → L2(U).

In order to measure the degree of making the functions less smooth we assume for a
t > 0

‖Lf‖Hs−t ≤ cL,s‖f‖Hs (2.6)

i.e., L is a differential operator or a pseudo - differential operator of order t. The
problem of determining Lf from Af = g is then ill - posed of order α+t, which means
that the ill – posedness is enhanced. When first dealing with ill - posed problems one
might think, that by choosing the right spaces the problem becomes well - posed, but
this is impossible, as the above discussion shows.

3. Approximate Inverse for Combining Reconstruction and Analysis.
The motivation for the approximate inverse where the problem Af = g is stably
solved by

Tγg = 〈g, ψγ〉

with a reconstruction kernel fulfilling A∗ψγ = eγ with a prescribed mollifier eγ is
at least twofold. Firstly the calculation of those functionals of the solution may be
stably achieved, in contrast to the calculation of the solution itself. This was already
observed with the Backus – Gilbert method, [1]. The method is too time – consuming
to evaluate the solution at all points. See also Eckhardt, [8] for the calculation of
the derivative of the solution. In connection with tomography it was observed by
Grünbaum, [7], that the filtered backprojection leads to a mollified version of the
searched–for solution. For an early application of the calculation of functionals of the
solution to partial differential equations see [15] and the recent paper by Ovall [27].
The second reason for the introduction of the approximate inverse was to derive fast
inversion formulae for the case when the same problem has to be solved repeatedly
with different right–hand sides, as it is the case for measuring devices as X–ray scan-
ners. Essentially for the method to be fast is the selection of the mollifier eγ according
to the invariances of the operator A, as was observed in [17], where also applications
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to some non – linear problems are treated. The essential difference to the mollifica-
tion method of Murio, see e.g. [23], is that f ∗ eγ does not replace f in the equation
Af = g, where in that way the kernel of the integral operator is smoothed, which
even amplifies the ill – posedness of the problem.
In this section we generalize the method of the approximate inverse as analyzed in
[18]. Let A : X → Y be a linear operator between the Hilbert spaces X and Y and
L : X → Z be a linear, possibly unbounded, operator between the Hilbert spaces X
and Z. Typical examples that we have in mind are differential operators where Z = X
and L : X → X is unbounded, or Z = `2 when we compute the wavelet coefficients
of the solution or Z = IRN when we compute N of those coefficients. In the last two
cases the operator L is bounded.
In the reconstruction part we have to solve

Af = g (3.1)

and then we apply the operation L on the so computed solution f for the image
analysis.
Now we adapt the concept of approximate inverse, first introduced in [20]. In [8, 18]
already derivatives of the solution of Af = g are directly calculated. We now compute
instead of Lf an approximation

(Lf)γ = 〈Lf, eγ〉

with a prescribed mollifier eγ(x, ·) ∈ X. The value x depends on the application. In
the situation X = L2(U) and L : X → X then x ∈ U is the reconstruction point
where Lf is evaluated. In the wavelet application x is the index of the scaling function
or the wavelet coefficient. We formulate in the following theorem the principle of the
reconstruction method, the technical details, as conditions on the mollifier, are treated
in the next section.

Theorem 3.1. Let eγ(x, ·) ∈ X be a suitably chosen mollifier and ψγ(x, ·) ∈ Y
be the solution of the auxiliary problem

A∗ψγ(x, ·) = L∗eγ(x, ·) (3.2)

Then the smoothed version of the image analysis operation is directly computed from
the given data g as

(Lf)γ(x) = 〈g, ψγ(x, ·)〉 (3.3)

Proof. We write the smoothed version of the image analysis part as

(Lf)γ(x) = 〈Lf, eγ(x, ·)〉

Now we use the adjoint operator of L and the auxiliary problem to continue

(Lf)γ(x) = 〈f, L∗eγ(x, ·)〉
= 〈f,A∗ψγ(x, ·)〉
= 〈g, ψγ(x, ·)〉

where in the last step we have used the original equation Af = g. We remark that
if the auxiliary problem is not solvable; i.e., if L∗eγ is not in R(A∗) ⊂ N (A)⊥ then we
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solve the normal equation AA∗ψγ = AL∗eγ which still leads to a regularized pseudo
- solution of the problem of finding Lf .

Definition 3.2. The operator Sγ : Y → Z defined as

Sγg = 〈g, ψγ(x, ·)〉 (3.4)

is called the approximate inverse of A to compute an approximation of Lf and ψγ is
called the reconstruction kernel.

4. Regularization Method. In this section we study the smoothness condi-
tions necessary to guarantee a suitable solution to the whole problem generalizing the
results of [19, 12] in the framework of ill – posed problems [9, 17]. Let A be a linear
operator between the Hilbert spaces X and Y and L be a linear operator between the
Hilbert spaces X and Z.

Definition 4.1. A regularization of A†L := LA† for finding the enhanced solution
Lf ∈ Z of Af = g and the application of the image analysis operator L is a family of
operators

{Tγ}γ>0, Tγ : Y → Z

with a mapping: γ : IR+ × Y → IR+, such that for all g ∈ D(A†L) and for all gε ∈ Y
with ‖g − gε‖ ≤ ε the equality

lim
ε→0,gε→g

Tγ(ε,gε)g
ε = LA†g

holds.
If the operator L is bounded then clearly any regularization Tγ for A† leads with

LTγ to a regularization of LA†. Hence we discuss in the following unbounded operators
and use the notation introduced in Section 2. The problem (A,L2(U), L2(V )) is ill –
posed of order α and L is a pseudodifferential operator of order t. In this setting the
pseudo – inverse Ã† maps L2(V ) to the space H−α(U) and then L to H−(α+t)(U).
This space is too large, hence we need some smoothing operator to come back from
this large space H−(α+t)(U) to L2(U). In the rest of this section the spaces are
considered as spaces over U , hence we omit U .

Theorem 4.2. Let Mγ : H−(α+t) → L2 be a family of linear continuous operators
such that

i)‖Mγf‖L2 ≤ c(γ)‖f‖H−(α+t) for all f ∈ N (A)⊥,
ii) lim

γ→0
‖MγLf − Lf‖ = 0 for all f ∈ N (A)⊥.

Then Tγ = MγLÃ
† is a regularization of A†L for finding Lf if we chose γ in such a

way that c(γ)ε→ 0 for ε→ 0.
Proof. Let g ∈ D(A†) and gε ∈ L2 such that ‖gε − g‖L2 ≤ ε, then we get with

A†g = Ã†g for all g ∈ D(A†):

‖Tγg
ε −A†Lg‖ ≤ ‖Tγ(gε − g)‖+ ‖Tγg −A†Lg‖

= ‖MγLÃ
†(gε − g)‖+ ‖Tγg − Ã†Lg‖

≤ c(γ)‖LÃ†(gε − g)‖H−(α+t) + ‖MγLÃ
†g − LÃ†g‖

≤ c(γ)cL,−αc
−1
1 ε+ ‖MγLÃ

†g − LÃ†g‖
ε→0−→ 0
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for ε→ 0 and γ such that c(γ)ε→ 0.
We now look for conditions for eγ from Section 3 in order to guarantee that

the method presented there is a regularization. The function eγ(x, y) is defined for
x, y ∈ U . If we consider a mollifier eγ of convolution type in IRN , then we can derive
the following result. We denote the Fourier transform of eγ by êγ .

Theorem 4.3. Let eγ(x, y) be of convolution type, i.e. eγ(x, y) = eγ(x− y), and

i)(2π)N/2sup
ξ
{(1 + |ξ|2)(α+t)/2|êγ(ξ)|} ≤ c(γ),

ii) sup
ξ∈IRN

(
|(2π)N/2êγ(ξ)− 1|

)
γ→0−→ 0

Then Tγg = 〈eγ(x, .), LÃ†g〉 is a regularization of A†L for finding Lf .
Proof. We check the conditions of Theorem 4.2.

‖Mγf‖2 = ‖F(Mγf)‖2

= (2π)N

∫
IRN

|êγ(ξ)f̂(ξ)|2dξ

= (2π)N

∫
IRN

(1 + |ξ|2)−(α+t)(1 + |ξ|2)(α+t)|êγ(ξ)|2|f̂(ξ)|2dξ

≤ (2π)N sup
ξ
{(1 + |ξ|2)(α+t)/2|êγ(ξ)|}2

︸ ︷︷ ︸
c(γ)2

‖f‖2
H−(α+t) .

which proves part i) in Theorem 4.2.

‖MγLf − Lf‖2 = ‖F(MγLf − Lf)‖2 =
∫

IRN

|(2π)N/2êγ(ξ)− 1|2|L̂f(ξ)|2dξ

≤ sup
ξ∈IRN

(
|(2π)N/2êγ(ξ)− 1|

)
‖Lf‖2

L2

−→0.

which proves part ii) in Theorem 4.2.
Example:

Let N = 2 and eγ be such that

êγ(ξ) = (2π)−1sinc
γ|ξ|π

2
χ[−1/γ,1/γ](|ξ|)

with sinc x = sinx/x. Checking the conditions of Theorem 4.3 we obtain:

i)(2π)1/2sup
ξ
{(1 + |ξ|2)(α+t)/2|êγ(|ξ|)} =

(
1 +

∣∣∣∣ 1γ
∣∣∣∣2
)(α+t)/2

= c(γ),

ii) sup
ξ
|2πêγ(ξ)− 1| → 0 forγ → 0

where we have used that sinc (x)| ≤ 1 and limγ→0 sinc (γx) = sinc (0) = 1. We also
note that supξ |ê(ξ)| ≤ (2π)−1. Hence EγÃ

†
L is a regularization of A†L.
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5. Invariances. The computational efficiency of the approximate inverse heav-
ily depends on the use of invariances. We mention again the reconstruction problem
in tomography. If we chose for each reconstruction point x a special mollifier, namely
eγ(x, ·), then the reconstruction kernel also depends on x, the number of values to
store is then the number of reconstruction points times the number of data. If we use
invariances, for example translation and rotational invariances of the Radon trans-
form and we use these invariances to produce the mollifier we can reduce this number
of values to compute and store to just the number of views per direction. The math-
ematical basis for this can be found in [18]. Here we derive the corresponding result
for the combination of reconstruction and image analysis.

Theorem 5.1. Let A : X → Y and L : X → Z be the two operators as above.
Let

T1 : Z → Z

T2 : X → X

T3 : Y → Y

be linear operators with

L∗T1 = T2L
∗ (5.1)

T2A
∗ = A∗T3 (5.2)

and let Ψγ be the solution of the auxiliary problem for a general mollifier Eγ ∈ D(L∗)

A∗Ψγ = L∗Eγ (5.3)

Then the solution for the special mollifier

eγ = T1Eγ (5.4)

is

ψγ = T3Ψγ (5.5)

Proof. We start with the right - hand side of the auxiliary problem and use the
above relations to get

L∗eγ = L∗T1Eγ = T2L
∗Eγ = T2A

∗Ψγ = A∗T3Ψγ ,

hence T3Ψγ solves the auxiliary problem.
As a consequence we observe that the solution for a special mollifier fulfilling the

condition eγ = T1Eγ can be found as

〈f, eγ〉 = 〈g, T3Ψγ〉 .

If for example the operators A and L are of convolution type and if we chose the
mollifier eγ also of convolution type, then the mappings Tk are all of translation type,
which means that also the final reconstruction formula is of convolution type.
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6. Tomography and Edge Detector. The mathematical model of computer-
ized tomography in two dimensions, for the parallel geometry, is the Radon transform,
see e.g. [25]. It is defined as

Rf(θ, s) =
∫

IR2
f(x)δ(s− x>θ)dx

where θ ∈ S1 is a unit vector and s ∈ IR.
We consider R as mapping

R : L2(Ω) → L2(S1 × IR)

where Ω is a bounded domain in IR2. In the notation of Section 2 we have A = R,
U = Ω and V = S1× IR. The Radon transform has a trivial null space. The relations
(2.2) and (2.3) hold with α = 1/2, see [25].
In the following we summarize a few results. The central slice theorem, or projec-
tion theorem is nothing but the formal application of the adjoint operator for fixed
direction θ on exp(ısσ)

R̂f(θ, σ) = (2π)1/2f̂(σθ) (6.1)

The Radon transform of a derivative is

R
∂

∂xk
f(θ, s) = θk

∂

∂s
Rf(θ, s) (6.2)

see e.g. [25], and generalizations for higher derivatives. The inversion formula for the
two – dimensional Radon transform is

R−1 =
1
4π

R∗I−1 (6.3)

where R∗ is the adjoint operator from L2 to L2 known as backprojection

R∗g(x) =
∫

S1
g(θ, x>θ)dθ

and the Riesz potential I−1 is defined with the Fourier transform

Î−1g(θ, σ) = |σ|ĝ(θ, σ)

where the Fourier transform acts on the second variable.
The following invariances are well established for the Radon transform. Consider

for x ∈ IR2 the shift operators T x
2 f(y) = f(y − x) and T x>θ

3 g(θ, s) = g(θ, s − x>θ)
then

RT x
2 = T x>θ

3 R (6.4)

Another couple of intertwining operators is found by rotation. Let Θ be a unitary
2× 2 matrix and DΘ

2 f(y) = f(Θy). then

RDΘ
2 = DΘ

3 R (6.5)

where DΘ
3 g(θ, s) = g(Θθ, s). With the (TR)∗ = R∗T ∗ we get the relations used

in Theorem 5.1. These two invariances lead for a mollifier of convolution type and
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independent of the directions; i.e., eγ(x, y) = Eγ(‖x − y‖), to a reconstruction ker-
nel for determining f of convolution type, independent of the direction, namely
ψγ(x; θ, s) = Ψγ(s− x>θ).

For the edge detectors we use differential operators Lk = ∂
∂xk

. These operators
are considered as

Lk : D(Lk) ⊂ L2(Ω) → L2(Ω)

hence the scalar products used in the following are L2 scalar products. They fulfill
condition (2.6) with

t = 1 .

We recapitulate the results necessary to apply the results from the last sections. The
Radon transform fulfills conditions (2.2) and (2.3) with α = 1/2. The Range of R is
described by consistency conditions, known as Helgason-Ludwig-Gelfand conditions,
for references see e.g. [25]. The operators Lk fulfil (2.6) with t = 1, which means
that the range of R†

Lk
consists of those functions of R† such that R†g ∈ H1(Ω),

hence LkR†g ∈ L2(Ω). The whole problem of determining Lkf form Rf = g thus is
ill–posed of order

α+ t = 3/2 (6.6)

We observe that also Lk intertwines with the shift operators considered above. Hence,
Theorem 5.1 tells immediately that if we choose a mollifier of convolution type, then
also the reconstruction is of filtered backprojection type as it is the case for the
standard reconstruction algorithm for determining f . In order to find the dependency
of the reconstruction kernel with respect to the direction we make use of the relation
of the Radon transform and the differential operators given in (6.2).

Theorem 6.1. Let the mollifier eγ(x, ·) be given as

eγ(x, y) = Eγ(‖x− y‖) (6.7)

Then the reconstruction kernel for finding Lkf , where Lk = ∂
∂xk

, is ψγ(x, ·) with

ψγk(x; θ, s) = θkΨγ(s− x>θ) (6.8)

where θk is the k-th component of θ and where Ψγ(s) is determined as

Ψγ = − 1
4π

∂

∂s
I−1REγ (6.9)

If, in addition, Êγ fulfills the conditions of Theorem 4.3, then Sγg := 〈g, ψγk〉 is a
regularization of R†

Lk
.

Proof. We start with the auxiliary problem and use the inversion formula for R

R∗ψγ = L∗keγ

= R−1RL∗keγ

=
1
4π

R∗I−1RL∗keγ

hence we get

ψγ =
1
4π

I−1RL∗keγ
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The relation (5.2) between Radon transform and differential operators together with
L∗k = −Lk results in

ψγ = − 1
4π
θkI−1 ∂

∂s
Reγ

Using Fourier transforms we see that I−1 and ∂
∂s commute, hence

ψγ = − 1
4π
θk

∂

∂s
I−1Reγ

Now eγ is independent of a direction, so is then Reγ and also the derivatives. Com-
bining this with the conclusions of Theorem 5.1 the above statement is proven.

In the following we present a special mollifier for verifying the theoretical results
of the preceding chapters. The cut–off frequency is denoted as b and it is related to
the γ used before by

b = 1/γ (6.10)

In a fist step we choose the mollifier for the reconstruction part. Because of its
advantageous properties we select the mollifier stemming from the Shepp – Logan
kernel,

ê1b(ξ) = (2π)−1sinc
‖ξ‖π
2b

χ[−b,b](‖ξ‖) (6.11)

For the differentiation part we choose with a possibly different parameter β

ê2β(ξ) = (2π)−1sinc
‖ξ‖π
β

(6.12)

leading to a combined kernel of the form

Ebβ = e1b ∗ e2β (6.13)

with

Êbβ(ξ) = (2π)−1sinc
‖ξ‖π
2b

sinc
‖ξ‖π
β

χ[−b,b](‖ξ‖) (6.14)

Theorem 6.2. The mollifier Ebβ given in (6.13) is of convolution type and
radially symmetric. It fulfills with γ = 1/b, see (6.yyyyy), and β = τb

i)2πsup
ξ
{(1 + |ξ|2)3/4|Êbβ(ξ)|} ≤ c(γ) =

(
1 + γ−2

)3/4

,

ii) sup
ξ∈IR2

(
|(2π)N/2Êbβ(ξ)− 1|

)
γ→0−→ 0

Hence, Tbβg = 〈g, ψbβ with ψbβ determined according to Theorem 6.1 is a regulariza-
tion for determining Lk, using all the invariances presented in this section.

Proof. Compared to the example at the end of Section 4 the Fourier transform
of the here used mollifier Ebβ has an additional factor sinc (π‖ξ‖/β) which is also
bounded by 1, hence estimate i) follows. Due to the fact, that the parameter β is tied
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to b and hence also tends to ∞ for γ → 0, also this factor tends to 1, which proves
the condition ii). In order to compute the reconstruction kernel for determining
Lkf we start by computing the Radon transform of Ebβ where we use that the Radon
transform of a convolution is the convolution of the Radon transforms

REbβ = Re1b ∗Re2β

Next we use the convolution theorem for Fourier transforms and the projection theo-
rem for the Radon transform to get

(REbβ)ˆ(σ) = (2π)1/2(Re1b)ˆ(σ)(Re2β)ˆ(σ)

= (2π)3/2ê1b(σθ)ê
2
β(σθ)

where we used that Ebβ(x) only depends on the length of x, hence its Radon transform
is independent of θ and in the last step we can use any θ. In the following we write,
for the sake of simplicity, ec(σ) instead of ec(σθ). Now we apply differentiation and
Riesz potential

− 1
4π

( ∂
∂s

I−1REbβ

)
ˆ(σ) = − 1

4π
(2π)3/2ıσ|σ|ê2β(σ)ê1b(σ)

= (2π)1/2
(
−ıσ(2π)1/2ê2β(σ)

)(1
2
(2π)−1/2|σ|ê1b(σ)

)
= (2π)1/2

(
ψ̂2

β(σ)
)(
ψ̂1

b (σ)
)

=
(
ψ2

β ∗ ψ1
b

)
ˆ(σ)

The kernel ψ1
b is with the above choice of e1b the Shepp – Logan kernel, see [25], page

111,

ψ̂1
b (σ) =

1
8π2

(2π)1/2|σ|sinc
‖ξ‖π
2b

χ[−b,b](‖ξ‖)

with

ψ1
b (s) =

b2

2π3

π
2 − bs sin(bs)

π
2

2 − (bs)2
(6.15)

For the kernel ψ2
β we observe

ψ̂2
β(σ) = −ıσ(2π)−1/2sinc (

σπ

β
)

= −ıσ(2π)−1/2 sin(σπ/β)
σπ/β

= −ıβ
π

(2π)−1/2 1
2ı
(
exp(ıσπ/β)− exp(−ıσπ/β)

)
= − β

2π
(
δ̂−π/β − δ̂π/β

)
(σ)

where we used in the last step that

δ̂s(σ) = (2π)−1/2 exp(−ısσ)
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For the final result of ψbβ we then get

ψbβ(s) = ψ2
β ∗ ψ1

b (s)

=
β

2π

(
ψ1

b (s+
π

β
)− ψ1

b (s− π

β
)
)

Now we choose b = β which means τ = 1 in the last theorem, and, as usual, see
again [25], we put b = π/h and s` = `h and get the new filter

ψπ/h(s`) =
1

π2h3

8`(
3 + 4`2

)2 − 64`2
, ` ∈ Z (6.16)

To present the algorithm we assume that the data Rf(θ, s) are given for sk = kh,
k = −q, ..., q, h = 1/q and θj = (cosϕj , sinϕj)> with ϕj = π(j − 1)/p, j = 1, ...., p.
We choose

γ =
π

h
(6.17)

leading to the filter ψγ from above.
• Step 1: For j = 1, ..., p evaluate the discrete convolutions

vm,j = h

q∑
`=−q

ψγ(sj − s`)Rf(θm, s`) , j = −q, ..., q . (6.18)

• Step 2: To get the partial derivatives with respect to xk, k =
1, 2, multiply

vk
m,j = θm,kvm,j (6.19)

• Step 3: For each reconstruction point x compute the discrete
backprojection( ∂

∂xk
f
)

γ
(x) =

2π
p

p∑
m=1

(
(1− η)vk

m` + ηvk
m,`+1

)
(6.20)

where, for each m and x, ` and η are determined by

s = θ>x , ` ≤ s/h < `+ 1 , η = s/h− `

When comparing to the standard reconstruction, see e.g. [25], we observe, that
the filter changes and in addition we have step 2, the multiplication with cosϕm or
sinϕm respectively. The filter is the same for both derivatives.

Here we optimized the choice of the different filters and the selection of the parameters.
In order to test the algorithm we choose the well – known Shepp – Logan phantom,
where we use the densities originally given by Shepp – Logan; i.e., the skull has the
value 2 and the brain has the value 1 ( in contrast to many authors, where these
values are lowered by 1 leading to a brain consisting of air, as in the outside of the
skull ). The objects inside the brain differ by 1% up to 3% to the surrounding tissue.
The number of data are p = 720 and q ≈ p/π, namely q = 326 leading to 653 rays
per view. The reconstruction is computed on a 1025× 1025 grid.
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Figures 1 and 2 show the result of the above mentioned algorithm with exact data. We
observe that even the height of the jumps is correctly computed within the numerical
approximation of the derivatives.

Then we added to the data 5% noise. Figure 3 shows the density reconstruction and
figure 4 the application of the smoothed derivative in x1 direction. Figures 5 and 6
show the result of the above algorithm, the contours of the object are clearly visible,
which is even the case for the objects differing only by 1% relative to the surrounding
tissue. This is not the case for the classical approach in Figure 4, and also not the
case for the application of Λ - tomography, where the second derivative of the data is
computed and backprojected, see Figure 7.

The artefacts outside the object can easily be removed by implementing the support
theorem for the Radon transform stating that the object vanishes on lines parallel to
θ not meeting the support of the data, see [2].

Fig. 1: Application of the above algorithm for derivative in x1 - direction with exact
data.



Reconstruction and Image Analysis 15

Fig. 2: Application of the above algorithm for derivative in x2 - direction with exact
data.

Fig. 3: Classical reconstruction of noisy data.
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Fig. 4: Smoothed derivative in x1 direction of the image in Figure 3.

Fig. 5: Application of the above algorithm for the direct computation of the
derivative in x1 - direction.
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Fig. 6: Application of the above algorithm for the direct computation of the
derivative in x2 - direction.

Fig. 7: Λ tomography, [10].
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Fig. 8: Reconstruction of the same data set with β = b replaced by β = 2b in the
second filter.

Figure 8 shows that if we don’t follow the theoretically motivated strategy of para-
meter selection as above we get much worse reconstructions. If we choose a smaller γ
then we loose resolution. As consequence we note that it pays off to combine the two
steps of image reconstruction and image analysis wherever possible.
Finally the Figures 9 and 10 show |L1f |+ |L2f | where the colortable is changed such
that the highest values are black, and the same window is used for both images. Fig-
ure 9 is produced with the here presented method, Figure 10 with first reconstructing
f and then the differentiation is performed on the smoothed reconstructions as in
Figure 4.



Reconstruction and Image Analysis 19

Fig. 9: Display of |L1f |+ |L2f | with the here presented method.

Fig. 10: Display of |L1f |+ |L2f | when first the function was reconstructed and then
the derivatives are computed from the smoothed image, compare Fig. 4.

What the computation time is concerned this approach differs only by the filter se-
lection from the standard filtered backprojection, so it is as fast as this, and the
additional computing time for the differentiation of the reconstruction is not needed.
When taking into account that the backprojection step in the calculation is, due to
the determination which detector position for a combination of direction and recon-
struction point is to be used, even the calculation of three images, namely the density
itself and the two derivatives, is almost as fast as the reconstruction of the image itself
if it is performed in one program.
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